An Off-Grid DOA Estimation Method Using Proximal Splitting and Successive Nonconvex Sparsity Approximation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Alternating Proximal Splitting Method with Global Convergence for Nonconvex Structured Sparsity Optimization

In many learning tasks with structural properties, structured sparse modeling usually leads to better interpretability and higher generalization performance. While great efforts have focused on the convex regularization, recent studies show that nonconvex regularizers can outperform their convex counterparts in many situations. However, the resulting nonconvex optimization problems are still ch...

متن کامل

Scalable nonconvex inexact proximal splitting

We study a class of large-scale, nonsmooth, and nonconvex optimization problems. In particular, we focus on nonconvex problems with composite objectives. This class includes the extensively studied class of convex composite objective problems as a subclass. To solve composite nonconvex problems we introduce a powerful new framework based on asymptotically nonvanishing errors, avoiding the commo...

متن کامل

Nonconvex Proximal Splitting: Batch and Incremental Algorithms

Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-base...

متن کامل

Nonconvex proximal splitting with computational errors∗

Throughout this chapter, ‖·‖ denotes the standard Euclidean norm. Problem (1) generalizes the more thoroughly studied class of composite convex optimization problems [30], a class that has witnessed huge interest in machine learning, signal processing, statistics, and other related areas. We refer the interested reader to [2, 3, 21, 37] for several convex examples and recent references. A threa...

متن کامل

Proximal Iteratively Reweighted Algorithm with Multiple Splitting for Nonconvex Sparsity Optimization

This paper proposes the Proximal Iteratively REweighted (PIRE) algorithm for solving a general problem, which involves a large body of nonconvex sparse and structured sparse related problems. Comparing with previous iterative solvers for nonconvex sparse problem, PIRE is much more general and efficient. The computational cost of PIRE in each iteration is usually as low as the state-of-the-art c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2917309